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Abstrad-The optimal solution to the optimum design problem of elastic frames with frequency­
dependent supports for specified fundamental natural frequency is shown to coincide with that of
the frames with the corresponding frequency-independent supports. provided that the support
stilTnesses of the former are e~pressed as single·valued non-increasing positive functions of
frequency. Two new theorems are introduced for establishing one-to-one correspondence between
the design spaces of these two classes of frames, It is also shown that the former optimal solution
for a fr;lIne with such support char;lctcristics is also the solution to the optimum design problem
subjccttl' the corresponding inequality wllstraint on fundamcntal natural frcquency.

1. INTROf)lICTION

The purpose of this paper is to disclose the characteristics of an optimal elastic structure
consisting of members or elements with frequency-independent stilfnesses and supported
by elastic springs or members with prescribed frequency-dependent stilTnesses. Building
structures and other civil engineering structures arc supported by the ground and a better
model representing the restoring-force characteristics of the supporting ground is a set of
springs or members with frequency-dependent stiffnesses.

The problem of optimum design of elastic structures for specified fundamental natural
frequency has been investigated extensively. A number of theories and various numerical
methods have been presented so far (Pierson, 1972; Olholf. 1980; Haug and Cea. (981).
To the best of the authors' knowledge, however, no previous paper has dealt with a problem
of optimum design of an clastic structure supported by members with prescribed fre­
quency-dependent stilfnesses.

The eigenvalue problem of free vibration of such a structure has a mathematical
structure dilferent from that of a structure involving no spring or member with frequency­
dependent stilfness. The former turns out to have a distinct stilfness matrix for each
vibration mode and the orthogonality relation between any pair of eigenvectors will not
hold in general. Furthermore. Rayleigh's principle will no longer hold without certain
restriction for the former clastic structure.

In this paper, some characteristics of an elastic structure with a prescribed fundamental
natural frequency supported by frequency-dependent springs arc illustrated first by a simple
example, Two new theorems arc then introduced and proved for establishing one-to-one
correspondence between the design spaces of an ordered set of elastic frames supported by
members with frequency-dependent stitfnesses nnd of the corresponding ordered set of
elastic frames supported by those with the corresponding frequency-independent stilfnesses.
both with respect to fundamental natural frequency, It is shown also that the optimal
solution to the problem ofoptimum design of the former structure for specified fundamentnl
natural frequency is also the optimal solution to the problem subject to the corresponding
inequnlity constraint on fundamentnl natural frequency, provided that the stitfnesses of the
supporting members arc single-valued non-increasing positive functions of frequency. An
optimum design ofa plane shear building model supported by clastic springs with frequency­
dependent stitfnesses is illustrated for demonstrating the implication of the theorems,
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Fig. l. Two-degn:e-,'f-freedom modeL

, ELASTIC STRUCTURES WITH FREQUEi'CY-DEPENDENT ELASTIC SUPPORT A"'D \VITH
FREQUENCY-INDEPE:'-iDENT ELASTIC SUPPORT

Some characteristics of an elastic structure with frt:ljut:ncy-dependent elastic supports
can be illustrated by the simple shear building model shown in Fig. I. The model has two
degrees of freedom only in horizontal direction. Tht: stifrness of the support is to bt:
frequency-dependent and is denoted by k I (n) where n dt:notes the square of a natural
circular frequency (I). On the other hand. the stiffness k: of the first story is to be frequency­
independent. Let m I and m: denote the lumped masses of the ground and second floors.
respectively. Then the corresponding eigenvalue probkm is defined as follows.

(I)

where /II a nd /I: denote the horizon ta I displacemen Is of masses m I and t1l:. respecti vel y.
Let!l" denote the specified eigenvalue for the model. Summation of the first and second

equations Df eqn (I) ulHkr the condition that U ;: !l" provides

from whidl the relative displacement ratio is given by

III n"t1l:

/I: - /II k I (U,,) - U" (t1l I + 11/ : )

The second eljuation of eqn (I) may be reduced to the following form.

Substitution of eqn (3) into eqn (4) yields the stiffness k! corresponding to !l".

(2)

(})

(4)

(5)

The eigenvalue equation for the elastic structure with k dn) and k! may be written as

follows.

(6)

On the other hand. the eigenvalue equation for the elastic structun: with the frequency­
independent support /(1 = kl(n,,) and k! may be expressed as follows.

(7)
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Fig. 1. Plotsof/~D(Q) in eqn (6) and/~,(Q) ineqn (7) with respect ton incaseofk,(Q) = 0.10:+ 100
(x 10' kg·rad:is:).

Consider a model with m, = mz = 1.0 x 10~ (kg), Q" = 100.0 (radz/s z) and k,(Q) =
0.2Q~+ 100( x 10 1 kg·radZ/sZ). Figures 2(a) and (0) show the plots of fm(Q) in eqn (6)
and .I~/(Q) in egn (7) for this model with respect to Q, respectively. Figures 2(a) and (b)
clearly illustrate that even if the clastic structure with the frequency-independent support
f, = k,(Q,,> has Q" as the fundamental eigenvalue, the elastic structure with the frequency­
dependent support k,(Q) docs not necessarily have U" as the fundamental eigenvalue.

Consider next another model also with fill = IIlz = 1.0 X 10.1 (kg), with the frequency­
dependent support k dU) = U - 20 ( x 10' kg' rad '/s!), and with Q" = 100.0 (rad z/s 2) as an
eigenvalue. The stifrness k! is determined similarly from eqn (2) through eqn (5). Then the
eigenvalue equations for the elastic structures with {kdH), k!} and with {f, = k,(Q,,), k!}
arc given by eqn (6) and eqn (7), respectively. Figures 3('1) and (b) show the plots of fm(Q)

and .I~An) with respect to n in this case, n:spectively. Figures 3(a) and (b) illustrate that
even if the ebstic structure with the frequency-dependent support k, (Q) has Q" as the
fundamental eigenvalue, the elastic structure with the frequency-independent support
f, = k ten,,> docs not necessarily have U" as the fund;ullental eigenvalue.

3. OIYrlMUM DESIGN I'ROOLEM FOR SPECIFIED fUNDAMENTAL NATURAL FREQUENCY

Consider an clastic framed structure, shown in Fig. 4, consisting of uniform elastic
members with frequency-independent stifrnesses and supported by clastic members with
prescribed frequency-dependent stifrnesses. The cross-sectional areas of the frequency­
inJependent clastic members are chosen as design variables. The centerline dimensions of
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( x 10' kg' rad 'Is:).
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Fig, 4, Elastic frame with fre4u~ncy-d~pend~ntelastic supports,

the frame and of the supporting members are prescribed. The degrees of freedom of the
whole structure. the number of members of the frame and the number of independent
stilfnesses of the supporting members are denoted by N. f1 and S. respectively. Let A, and
I, denote the cross-sectional area and length. respectively. of the ith member of the franle,
All the members that are to be assigned one and the same cross-sectional area are to be
regarded as one member with the whole length. The set of the cross-sectional areas A, (i = I.
2..... II) is represented by ,\ ~Ind is called "design ,\ ". The frame may he composed of some
truss memhers with axial stitfness only and,'or of some heams or columns with axial and
hending stitfnesses. The Young's modulus of each member is to he prescribed. The moment
of inertia of the cross sectioll of each member with bending stiffness may he a nonline<lr
function of the cross-sectional area.

The supporting members m<lY also he composed of some truss members and/or some
heams or columns whose <lxi'll and/or hending stiffnesses arc frequency-dependent. The jth
axial or bending stiffness of the supporting memhers is denoted by IJ,(Q) and a set of lJ,(n)'s
is represented by H(n) =: 1J,(Qj}. For the sake of simplicity. the elastic frames of design A
supported by the members with frequen<.:y-dependent stiffnesses B(!l) and by the members
with frequency-independent stitfnesses R" (= 8(0.,)) are referred to in the following as "the
frame of design A with 8(0)" and "the frame of design A with R,,", respectively.

The stitfness matrix KF/,(A; B(!l)) of N x N in the global coordinate system of the
frame of design A with B(Q) may be expressed as follows in terms of the stitfness matrix
K,(A) associated with the frame and the stiffness matrix K,,(lJ(Q» associated with the
supporting members.

Both K,(A) <Ind K,,(H(!l)) are the stiffness matrices of N x N in the global coordin<lte sysll:m.
Each component of K,,( 8(0)) is a linear function of some of B,(O) 'so

The mass matrix of the frames of design A with H(Q) and with i( is to consist of the
lumped mass matrix \I" of N x N and the consistent mass matrix M,(A) of .v x N. The
mass matrix i\1{A) may then be expressed as follows.

M(A) = ;\.,(A)+1\I". (9)

I I' the kth-order eigenvalue and the kth-order eigenvector of the frame of design A with
8(Q) arc denoted by Q. and Z\~),. respectively. then the eigenvalue problem in this case may
be expressed as follows.

( 10)

Equation (10) indicates that this eigenvalue problem has a mathematical structure ditferent
from that of a usual elastic structure without any member with frequency-dependent

stiffness.
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The minimum weight design problem of this model structure for specified fundamental
natural frequency may be stated as follows.

Problem FEe
For an elastic frame supported by elastic members with frequency-dependent stiffnesses

8(11). find A that minimizes the objective function

(\I )

subject to the constraint on fundamental natural frequency

and the constraints on the minimum cross-sectional areas

Ai ~;f; (i = 1. 2•... . n)

(12)

( 13)

where (lJ1(A) and (I)" denote the fundamental natural frequency of the frame of design A
with 8(11) and the specified fundamental natural frequency. respectively. Furthermore.
11 1(A) = w I(A):. 11" = co,; and [,T = {II .. . In } where ( )T indicates the transpose ofa vector.
The case where all of the constraints on the minimum cross-sectional areas are satisfied in
equality is not dealt with here.

[n this paper. the only case will be considered where all of the stilTnesses 8(11) of the
supporting members are expressed 'IS single-valued non-increasing positive functions of 11.
[t may appear ditlicult in Prohlem FEe to distinguish the frame of design A with 8(11)
from the frame of design A with 8" after the specification of the fundamental natural
frequency. It should be noted. however, that while the fundamental eigenvector of the frame
of design A with 8" is characterized by Rayleigh's principle. that of the frame of design A
with 8(U) is not. Even if un eigenvector might be found for the frame of design A with
11(11). no other method to confirm it as the fundamental eigenvector exists except by
demonstrating that the corresponding eigenvalue is indeed the minimum positive root of
the eigenvalue equation. As demonstrated in the previous section. then: exist distinct
differences between .1 frame with supports 11(11) and a frame with supports 8" in the case
that the stilrnesses 8(11) have no restriction on their char'lcteristics.

4. TWO THEOREMS FOR ELASTIC FRAMES WITH FREQUENCY·DEPENDENT AND
FREQUENCY·INDEPENDENT SUPPORTS

In order to derive a set of necessary and sutlicient conditions for global optimality to
Prohlem FEe. the following theorems must be introduced and proved first.

Theorem I. Let w" denote the jimdamental nafllral frequency of the frame of design A
with 8" (= 8(11,,». Then the frame of design A with 8(11). all the elements B/11) of which
are single-L'alued non-increasing positiL'e functions ofO. has the same set of the fundamental
natural frequency and the fundamental eigenL'ector as that of the former frame.

Proof Theorem I may be proved by showing that the frame of design A with B(O)
has w" as one of the natural frequencies but will not have any other natural frequencies
smaller than OJ".

Equation (10) for the frame of design A with 8" and with the fundamental natural
frequency (I)" may be written as follows.

( 14)

where KF/(A; 8.,> and ZF/(A) denote the stiffness matrix of the frame of design A with 8"
and the fundamental eigenvector of this frame. respectively. KF/(A; 8,,) is the matrix derived
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by replacing B(Q) by B" in the matrix I\fD('\: B(Q)). Premultiplication ofeqn (14) by ZFl(A)T

provides the following expression ofQ" as a Rayleigh's quotient.

(\ 5)

Since eqn (\ 5) is the Rayleigh's quotient forthe frame consisting of members with frequency­
independent stiffnesses and Q" is indeed the fundamental eigenvalue of this frame, the right­
hand side of eqn (15) for any other kinematically admissible modes has the minimum value
Q" due to Rayleigh's principle.

Now assume that the frame of design A with B(O) has an eigenvalue 01' =

Q" - dQ(dQ > 0) smaller than Q". Then the stiffness matrix of this frame for the free vibra­
tion of frequency wI' may be expressed as follows due to the linearity of each component
of the matrix 1\11 with n:spect to BI(O).

( 16)

where dB = B(Q,,-dQ)- B(Q.,) and dB, ~ 0 (for all j) due to the non-increasing charac­
teristics of B(Q). Let Zv(A) denote the eigenvector of this frame corresponding to the
eigenvalue nv' By substituting Or and Z,,(A) in place of a" and Z~~,~ in eqn (10) and
premultiplying the resulting equation by Zr(A)', the eigenvalue Or may be written as
follows.

ZI'(A)'K,.,,(A: H(U,,-,M2»)ZI'(A)
n,. = • ,. .

Z,,(A) M(A)ZI'(A)
( 17)

Substitution of eqn (I(,) into eqn (17) with the aid of K,,(B(O,,)) = KII(R,,) yields the
following equation.

(I X)

Since Zp(A) is a kinematically admissible mode for the frame of design A with R", the
following inequality is drawn from eqn (15) due to Rayleigh's principle.

! ~ ZI'(A)'Kf/(A; Il,JZI'(A)

2" '" Z/,(A)' M(A)Zp(A)
( 19)

Furthermore, the fact that fl.B
J
~ 0 (for all j) and the positivc dctiniteness of the matrices

Kill and M(A) provide the following inequalitics.

s

Zp(A)'KII(fl.B)ZI,(A) = L fl.B,{Z,,(A)'K/I,Zr(A):· ~ 0
, - I

s
KII(t.8) = L L\B/ K/I/.

/ - I

(20a)

(20b)

(21)

In inequalities (20a, b), Z,,(A)'M(A)Zr(A) and Z,.(A)'K/I,Z,.(A) reprcsent the total kinetic
energy of this frame in the free vibration and the strain energy per unit stiffness of the jth
element with B,(O). respectively. Equation (18) and inequalities (19) and (20a,b) require
that the inequality a,. ~ 0" must hold. But this result apparently contradicts the initial
assumption that 0,. < 0". Therefore there does not exist any eigenvalue smaller than 0" in
the case that all of the stitfnesses B(Q) of the supporting members are single-valued non-
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Fig. 5. (i) Plots of fundamental eigenvalues of the frame of design A with respect to stiffness BJ of
a frequency-independent supporting member and (ii) Q- B,(Q) curve.
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increasing positive functions ofQ. Hence it is concluded that the eigenvalue Qu of this frame
of design A with 8(Q) is indeed the fundamental eigenvalue.

Since the frame of design A with 8(Q) and the frame of design A with au have the
same stiffness and mass matrices due to KFO(A; 8(Qu»= K,..,(A; au), it is evident that they
have the same fundamental eigenvector. This completes the proof.

The converse theorem may be stated as follows.

Theorem 2. Let W u denote the jimdamental natural frequency of the frame of design A
with 8(Q) all the elements 8,(0) of lI'hieh are single-rallied non-increasing positive futlctions
of Q. Then the framc 4 dcsif/n A with Il., (= 8(Q,J) has the same sct of the jimdamental
naturalfret/lIcnc.r ami the.!imdamenwl Cif/Cflt'cetor as that of the former frame.

Proof Theorem 2 can be proved by showing that the frame of design A with au has
(I)" as one of the natural frequencies. but will not have any other natural frequencies smaller
than w".

Assume that the frame ofdesign A with R" = B(Q,J = {Bu,} has W u as one of the natural
frequendes other than the fundamental natural frequency. Then this frame appurently has
the fundamental natural fn:quency WI smaller than (1)". It is possible to prove that the frame
ofdesign A hasa fundamental natural frequency greater than orequal tOWI when supported
by clastic members with stitfnesses larger than Ru • Figure 5 indicates that the plots of the
fundamental eigenvalue of the frame of design A with respect to the stiffness ofa frequency­
independent supporting member intersect with the Q- 81(Q) curve at a point smaller than
Qu' Let Q~ and A~ = {11'11} denote the fundamental eigenvalue and the stiffnesses of the
frequency-independent supporting members at the intersection. Then it is apparent that
R~ = 8(Q~). It follows from Theorem I that if the frame of design A with a~ = 8(0~) has
the fundamental natural frequency w~. the frame of design A with 8(0) also has the
fundamental natural frequency (1)~. This consequence, w~ < W", apparently contradicts the
condition that the frame of design A with 8(Q) has the fundamental natural frequency W".

It is therefore concluded that the frame of design A with A" has w" as the fundamental
natural frequency. This completes the proof.

Theorems I and 2 lead us to the conclusion that the design space with respect to the
fundamental natural frequency W u of a frame of design A with 8(0) has one-to-one
correspondence with that of the frame of design A with au = 8(0") so long as all the
elements of B(O) are single-valued non-increasing positive functions of O.

The necessary and sufficient conditions for global optimality to Problem FEe can be
derived as follows after Sheu (1968) for the case where the moment of inertia of the cross
section of each member is expressed as a linear function of the cross-sectional area.

ZmlAY(K, -Q"M, )Zm(A) I,
---Z;D(A)TM(~X)- = ~

Zm(A) T (K; -Q)\-1; )Zm(A) I,
------..~----r------- ~ -

Zm(A) M(A)Zm(A) 11-
if A, = Ai

(22a)

(22b)
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where Ais the optimum design for Proh!em FEe. ~l a positive scalar and K,. \1, the following
matrices.

(23a.b)

5. OPTIMlJ\1 DESIG:" PROBLHI SUBJECT TO A:" I:"EQUALlTY CO;'llSTRAl:"T 0;'11
FU~DAME~TAL:"ATCRALFREQUE~CY

Thus far. only the optimum design probkm ofelastic structures supported by members
with frequency-dependent stiffnesses subject to an equality constraint on fundamental
natural frequency has been dealt with. Consider next an extended optimum design problem
subject to an inequality constraint on fundamental natural frequency. For the sake of
simplicity. an optimum design problem without any constraint on minimum cross-sectional
area is considered. The optimum design problem ofelastic structures supported by members
with frequency-dependent stiffnesses subject only to an inequality constraint on fun­
damental natural frequency may be stated as follows.

Proh!cfIl FICA
For an elastic frame supporl\:d by clastic members with frequency-dependent stiffnesses

8(0). lind A that minimil.es the objective function (II) subject to the inequality constraint
on fundamental natural frequency

(24)

A problem where all the constrai nts on the minimum cross-sectional areas arc deleted
in Prohlcm FEe is called Proh!cm FECA in the following.

Since the stilfnesses 8(0) of the supporting members are fn:quency-dependent, the
optimal solution to Proh!('fIl FICA may not necessarily coincide with the optimal solution
to the corresponding I'roh!t'ffl FEC'/. In this section, the qualification condition on U(O)
is discussed so that the optimal solution to Prohlem FEC·' is also the optimal solution to
Prohlml FICA. The optimality conditions characterizing the global optimality of the
solution to I'rohlem FIX'A have been stated in the previous section. A set of optimal
solutions to I'roh!('fIl Fl:X'A for a specified range of fundamental eigenvalue Q constitute
an ordered set of optimum designs (Nakamura and Ohsaki. (988). All the variables in this
ordered set of optimum designs may be regarded as piecewiscly ditl'crentiable continuous
functions of n. If the following condition is satisfied for all Q in the range of Q ~ Q". then
the solution to Proh!efll FECA with the constraint n = n" also becomes the solution to
Prohlem FICA with the constraint n ~ 0".

(111'(0)
dn > O. (25)

While the concepts of an ordered set of optimum designs (Illd of regarding the optimum
design variables as functions of some problem parameters arc known (see for instance,
Nakamura and Nagase. 1976). some explicit general expressions of sensitivity coellicients
of optimum solutions have heen introduced rather recently (Sobieszczanski-Sobieski c( al..
1982; Schmit and Chang. 1984; Vanderplaats and Yoshida. 1985). The derivative of w(Q)

can be written explicitly as follows.
Let A(O) and Zm(O) .= Zm(A(O) denote the cross-sectional areas and the fun­

damental eigenvector of the optimal frame supported by members with frequcncy-depen­
dent stilfnesses in Proh!C!1I FEC·' with the constraint on fundamental eigenvalue n I (A) = O.
Since the constraint on fundamental natural frequency is the only active constraint in
Prohlc1!I FEC·I, the derivative of the objective function with respect to 0 can bc expressed
as follows after Barthelemy and Sobieszczanski-Sobieski (1983).



Optimal elastic structures with frequency-dependent elastic supports

Fig. 6. Plane c!;\stic shear building supported by tWl) frequcncy-depcndcnt clastic springs.
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(26)

where M(O) == M(A(O» and Jl(O) denotes a positive Lagrange multiplier. As stated before,
Zm(O)'M(O)Zm(O) and Zm(O)'Ks,Zf'O(O) in eqn (26) arc positive definite.

If all the clements of 8(0) arc single-valued non-increasing positive functions of O.
then the following inequalities hold.

(27)

It can be shown that ifinequalities (27) arc utilized in eqn (26), then inequality (25) always
holds. It is concluded therefore that the solution to Prublem FECA is also the solution to
Prublem FICA. provided inequalities (27) are satisfied. i.e. all the stitfnesses of the supporting
members are given as single-valued non-increasing positive functions of O.

It should be noted that dll'(O)/dO and dBJ(O)/dO in eqn (26) need only to be piecewisely
differentiable, e.g. the stiffness functions 8(0) of the supporting members may include
Jumps.

6. EXAMPLE: PLANE ELASTIC SIIEAR BUILDING SUPPORTED BY
FREQUENCY·DEPENDENT ELASTIC SPRINGS

Consider a plane elastic shear building, shown in Fig. 6. supported by two elastic
springs with frequency-dependent stiffnesses as an example. The stiffnesses k,/(O) and kR(O)
of the two springs arc to be prescribed. The s columns with equal stiffness in each story arc
connected by rigid floors. The lumped mass in the ith floor, its moment of inertia around
its centroid and the story height of the ith story arc denoted by mi. IRi and hi. respectively.
and are prescribed. Let ri and E denote the radius of gyration of the cross section of the
columns in the ith story and Young's modulus of all the columns and they are also
prescribed. The set of cross-sectional areas A of the columns are the design variables here.
For simplicity of expression. the consistent mass matrix is not considered in this example.
A horizontal displacement u,{t) and an angle 0f(t) of rotation of the base and a set
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of rdative horizontal displacements u dl) .. . u/(t) of the shear building to the base
arc chosen as generalized coordinates. where l denotes time. The fundamental eigen­
vector of the shear building of design A with kH(Q) and kRfn) is expressed here as
Zm(.-\lT = :LAA) LAA)+CIIA) ... UF(A)+C,(A) 0 F(A):. The degrees of freedom of
this model is N = f + 2.

The matrices \1". K, and KB; defined in the foregoing sections may be expressed as
follows.

~ O. 0
Ill" 0 ()

() 0
()

0
till tnlH I 0

g, -g,

1\1" == K =
0

,
O.

' fIIr fni H/
-,tI, g,

0

0 fill HI m l HI IT 0 0
()

0 0

0

O. 0 O. 0

Kill == K II : =: (2Kad)

() '0 0 '0

()

where

I , 12sEr}
ff, = Ih" f T == L !/Ilff} + L f H,. .tI, = h,'

(2lJacl
J- t /- I /-0

In this example, 1J,(n) = kl/(n) and Bc(n) = k/l(!l). The matrix M i becomes the null matrix
al:l:onling to the assumption mentioned ahove.

The problem l:orresponding to I'rohlt'1Il rECA may now be stated as follows.

{'ro},lI.:f11 SEC
For a plane elastic shear building supported by two springs with frequency-dependent

stitfnesses kT/(n) and kH({lj. tind A that minimizes the objel:tivc funl:tion

II' = AIL

subject to the constr,lint on fundamental natural frequenl:y

(30)

(3\ )

where AT =: {II I'" A,} and 1/ =: {lr l •• • Irk
Application or the optimality condition (22a) into Prohlem SEC provides the following

equation.

Equation (32) may be rewritten as folllnvs.

(i = I. 2.... Jl (32)
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Fig. 7. Plots of dimensionless stiffness ofa rotational spring with respect to dimensionless frequency.

(33)

It should be noted that the optimality conditions (33) involve a problem of selecting
an appropriate combination of square root signs. The set of optimality conditions (33)
must therefore be understood as the conditions stated for the true fundamental eigenvector
of the shear building of design Awith {kl/(il). kR(il):-. Since it can be stated from Theorems
I and 2 that the shear building of design A with {kl/(il). kR(iln and the shear building of
design A with :fl/ = kl/(il.), f R = kR(il.,>} have the same set of the fundamental natural
frequency and the fundamental eigenvector. this problem can be resolved by requiring that
the eigenvector in eqn (33) is the true fundamental eigenvector of the shear building of
design A with {fll' f R:·. It can be proved that if a set of all the positive roots or a set of all
the negative roots is adopted, then the corresponding eigenvector indeed minimizes the
Rayleigh's quotient for the shear building of design A with {fll. f R} and. therefore. is the
true fundamental eigenvector. This circumstance is almost the same as in the case ofa plane
clastic shear building with a lixed base (Nakamura and Yamane, 19X6).

It is possible to derive a set of closed-form solutions of the fundamental eigenvector
and the optimal cross-sectional areas to P,oh!em SEC by utilizing the optimality conditions
(33) and the equations corresponding to eqn (10) for this model as in the case of clastic
shear buildings supported by springs with frequency-independent stitl"nesses (Nakamura
and Takewaki, 19X5).

Now in order to demonstrate the validity of Theorems I and 2, consider a rigid disc
rested on an elastic half space and evaluate the frequency-dependent stiffnesses of the
two clastic springs as the real parts of the impedance functions. Approximate analytical
expressions for kll(il) and kR(il) have been derived as follows by Vdetsos and Verbic
( lLJ74).

(34)

(35)

where V,. p. v and '" denote the shear wave velocity, the mass density and the Poisson's
ratio of the half-space soil and the radius of the rigid disc, respectively. The coefficients b I.

h: and h J are the constants given corresponding to the Poisson's ratio. In this example, the
case where \' = 1/3, p = 2.0 X 10' (kg/m'), V. = 100 (m/s) and,,, = 5.64 (01) is dealt with.
The constants are then given by hI = 0.5. h: = 0.8 and b J = 0.0. In this case. the horizontal
stiffness kll(il) turns out to be a constant and the rotational stiffness kR(il) a function of
il. Figure 7 shows the plots of the values in the bracket in eqn (35) with respect to the
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dimensionless freljuency (/" = wr,,/ V, when: (I) = \; Q. It is therefore said that the still'nesses
kl/(Q) and kR(Q) are single-valued non-increasing positive functions ofQ.

A ten-story shear building is considered here. The lumped masses and the moments of
inertia of !loor masses are prescribed as fII o = l)O.O x 10 ' (kg). fII, = 30.0 x 10 ' (kg)
(i = 1. .... 10) and I Ro = 7.5 x 10~ (kg' m~). I R, = 2.5 x I()~ (kg' m~) (i = 1. .... 10). The
story heights are pn:scrioed as II, = 350.0 (cm) (i = I ..... 10) and the radii of gyration of
columns as a constant. If the fundamental eigenvalue is specified as Q u = 31).5 (rad's') which
corresponds to 1.0 (s) of the fundamental natural period. the wrresponding dimensionless
frequency (/" and the dimensionless still'ness of kR(Q) arc indicated oy the mark 0 in Fig.
7. Let fl/ = kl/(Q..> and f H = kH(Q"> denote the freljuency-independent stitl'nesses. Then the
optimal solution of the shear building which is supported by the freljuem;y-independent
springs {fl/' f H } and has the fundamental eigenvalue Q u is obtained from the design formula
hy Nakamura and Takewaki (1I)H5) and is given by:.·I,g,: = {113.H. 111.5. 107.3. 100.1).
92.6. X2.2. (1).X. 55.4. 31).0. 20.S} (N/m).

The solid line in Fig. Xshows the plots of the function wrresponding to cljn (6) with
respect to n ofthc shear building of design {A,g,: with:kl/(!l). kll(nj}. On the other hand.
the hroken line in Fig. 8 shows the plots of the function wrresponJing to eljn (7) with
respect to Q of the shear building of llcsign :.·I,q,} with :fl/. c.:. Figure 8 indicates that
both of the shear buildings of the samc design {A,q,} with:kl/(n). kx({l)} and {fl/' fll}
have n" as the fundamental eigenvalue. This fact clearly demonstrates the validity of
Theorems I and 2.

7. CONCLUSIONS

Two theorems have been introduced and proved. In the lirsttheorem it has been proved
that an clastic frame supported by memoers with frequency-dependent stifl'nesses has the
same set of a fundamental natural frequency and a fUlllbmental eigenvector as that of thc
same clastic frame supported by members with the corresponding freljuency-independent
stifl'nesses. provided the former stitl'nesses arc expressed by single-valued non-increasing
positive functions of freljlleney. It has been shown also that the converse theorem holds.
These two theorems have estaolished one-to-one correspondence betwecn the design spaces
of an ordered set of clastic frames supported by members with freljuency-dependent stifl'­
nesses and of the corresponding ordered set of clastic frames supported by those with the
corresponding freljuency-independent still'nesses. both with respect to fundamental natural
freljuency. On the basis of this one-to-one correspondence. it has heen concluded that the
neceSS.lry and sufficient conditions of global optim.tlity for the optimum design problem of
the former frames coincide with those of the laller frames.

It has been shown furthermore that. for the ordered set of optimum designs with
respect to the prescribed fundamental natural frequency. the llrst derivative of the objective
function is positive throughout that range or frequency for which all the support stilfnesses
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are expressed as single-valued non-increasing positive functions. Hence it has been con­
cluded that the optimal solution to the optimum design problem for specified fundamental
natural frequency is also the optimal solution to the problem subject to the corresponding
inequality constraint for frames with those supports. The implication of the theorems has
been illustrated through an optimum design of a ten-story plane shear building model
supported by two springs with realistic frequency-dependent stitfnesses and by those with
frequency-independent stitfnesses.

It should be remarked finally that the two theorems are certainly applicable to any
finite element model supported by springs with frequency-dependent stitfnesses.
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